Лекция 5. СТЕПЕННЫЕ РЯДЫ

- 1. Определение и сходимость степенного ряда.
- 2. Радиус сходимости и интервал сходимости.
- 3.Свойства степенных рядов.

1. Определение и сходимость степенного ряда. Определение 1. Ряд вида

$$a_0 + a_1(x - x_0) + ... + a_k(x - x_0)^k + ... = \sum_{k=0}^{\infty} a_k(x - x_0)^k$$

где a_k , x, x_0 — действительные числа, членами которого являются степенные функции, называется *степенным рядом* по степеням $(x-x_0)$, а числа a_k — **коэффициентами** степенного ряда.

При $x_0 = 0$ имеем *степенной ряд по степеням* x

$$a_0 + a_1 x + ... + a_k x^k + ... = \sum_{k=0}^{\infty} a_k x^k$$
,

Поскольку заменой $x - x_0 = X$ ряд $\sum_{k=0}^{\infty} a_k (x - x_0)^k$ можно све-

сти к ряду $\sum_{k=0}^{\infty} a_k x^k$, то будем рассматривать ряды $\sum_{k=0}^{\infty} a_k x^k$.

Степенной ряд $\sum_{k=0}^{\infty} a_k x^k$ всегда сходится в точке x=0. При $x \neq 0$ степенной ряд может как сходиться, так и расходиться.

Теорема 1 (Абеля). Если степенной ряд $\sum_{k=0}^{\infty} a_k x^k$ сходится в точке $x_0 \neq 0$, то он сходится абсолютно в интервале $-|x_0| < x < |x_0|$ и сходится равномерно на отрезке $-q \le x \le q$, где $0 < q < |x_0|$.

▶ Так как по условию теоремы числовой ряд $\sum_{k=0}^{\infty} a_k x_0^k$ сходится, то $\lim_{k\to\infty} a_k x_0^k = 0$. Следовательно, последовательность

 $\left(a_{k}x_{0}^{k}\right)_{k=0}^{\infty}$ ограничена. По определению ограниченной последовательности имеем

$$\forall k \in \mathbf{N} \ \exists M > 0 : \left| a_k x_0^k \right| < M .$$

Отсюда

$$\left|a_{k}\right| \leq \frac{M}{\left|x_{0}\right|^{k}}.$$

Пусть $|x| < |x_0|$.

Тогда

$$\sum_{k=0}^{\infty} |a_k x^k| = \sum_{k=0}^{\infty} |a_k| \cdot |x|^k \le \sum_{k=0}^{\infty} M \left| \frac{x}{x_0} \right|^k.$$

Члены ряда $\sum_{k=0}^{\infty} M \left| \frac{x}{x_0} \right|^k$ — образуют геометрическую прогрессию со знаменателем $\left| \frac{x}{x_0} \right| < 1$. Поэтому этот ряд сходится. Сле-

довательно, ряд $\sum_{k=0}^{\infty} a_k x^k$ в точке $x \neq 0$ сходится абсолютно.

Если $|x| \le q < |x_0|$, то $\left| \frac{x}{x_0} \right| \le \frac{q}{|x_0|} < 1$. Тогда ряд $\sum_{k=0}^{\infty} a_k x^k$ мажори-

руется сходящимся числовым рядом $\sum_{k=0}^{\infty} M \left(\frac{q}{|x_0|} \right)^k$. По признаку

Вейерштрасса, он сходится равномерно на отрезке [-q;q].

Следствие. Если в точке $x_1 \neq 0$ степенной ряд $\sum_{k=0}^{\infty} a_k x^k$ расходится, то он расходится во всех точках x, таких, что $|x| > |x_1|$.

lacktriangle Действительно, если бы ряд $\sum_{k=0}^{\infty} a_k x^k$ сходился в точке x,

то по теореме Абеля он сходился бы абсолютно в точке x_1 , что противоречит условию. \blacktriangleleft

2. Радиус сходимости и интервал сходимости.

Из теоремы Абеля и следствия вытекает, что если степенной ряд $\sum_{k=0}^{\infty} a_k x^k$ сходится хотя бы в одной точке $x \neq 0$, то всегда существует число R>0, такое, что степенной ряд сходится (абсолютно) для всех $x\in (-R;R)$ и расходится для всех $x\in (-\infty;-R)\cup (R;+\infty)$.

При $x = \pm R$ ряд $\sum_{k=0}^{\infty} a_k x^k$ может быть как сходящимся, так и расходящимся.

Определение 2. Число $R \ge 0$ называется *радиусом* сходимости степенного ряда $\sum_{k=0}^{\infty} a_k x^k$, если степенной ряд сходится в каждой точке интервала (-R;R) и расходится при |x| > R. Интервал (-R;R) называется интервалом сходимости.

Если ряд $\sum_{k=0}^\infty a_k x^k$ сходится только в точке x=0 , то R=0 ; если же он сходится для всех $x\in {\bf R}$, то $R=\infty$.

Для нахождения радиуса сходимости степенного ряда используют признаки Д'Аламбера и Коши.

Теорема 2. Пусть для коэффициентов ряда $\sum_{k=0}^{\infty} a_k x^k$ существует предел $\overline{\lim_{k\to\infty}} \sqrt[k]{|a_k|} \neq 0$. Тогда радиус сходимости находится по формуле Коши-Адамара

$$R = \frac{1}{\overline{\lim_{k \to \infty}^{k} \sqrt{|a_k|}}}.$$

▶ Пусть $\overline{\lim_{k \to \infty}} \sqrt[k]{|a_k|} = L \neq 0$. Тогда $\overline{\lim_{k \to \infty}} \sqrt[k]{|a_k x^k|} = L|x|$ и по при-

знаку Коши при L|x| < 1 ряд сходится абсолютно, а при L|x| > 1 расходится. Следовательно,

$$R = \frac{1}{L} = \frac{1}{\overline{\lim_{k \to \infty}^{k} \sqrt{|a_k|}}}.$$

Если $\varlimsup_{k\to\infty} \sqrt[k]{|a_k|} = L>1$, то расходится не только числовой ряд $\sum_{k=1}^\infty \left|a_k\right|$, но и ряда $\sum_{k=1}^\infty a_k$, так как нарушается необходимый признак его сходимости:

$$L > 1 \implies |a_k| \to \infty \implies a_k \to 0. \blacktriangleleft$$

Замечание 1. Аналогично, если существует предел $\lim_{k\to\infty} \left|\frac{a_{k+1}}{a_k}\right| = L \ , \ \text{то применяя признак Д'Аламбера, получим}$

$$R = \lim_{k \to \infty} \left| \frac{a_k}{a_k + 1} \right|.$$

Пример. Найти радиус сходимости ряда $\sum_{k=0}^{\infty} k! x^k$.

Решение. Имеем

$$R = \lim_{k \to \infty} \frac{k!}{(k+1)!} = 0.$$

Значит, ряд сходится в единственной точке x = 0.

Замечание 2. Степенной ряд общего вида $\sum_{k=0}^{\infty} a_k (x-x_0)^k$ за-

меной $x-x_0=X$ сводится к ряду $\sum_{k=0}^{\infty}a_kX^k$. Пусть R радиус

сходимости ряда $\sum_{k=0}^{\infty} a_k X^k$. Тогда ряд $\sum_{k=0}^{\infty} a_k (x-x_0)^k$ сходится абсолютно при $|x-x_0| < R$ и расходится при $|x-x_0| > R$. Здесь число $R \ge 0$ называют *радиусом сходимости*, а интервал $(x_0-R;x_0+R)$ – интервалом сходимости степенного ряда..

Пример. Найти область сходимости ряда $\sum_{k=1}^{\infty} \frac{(x-3)^k}{k \cdot 5^k}$.

Решение. Имеем

$$R = \lim_{k \to \infty} \frac{\frac{1}{k \cdot 5^k}}{\frac{1}{(k+1) \cdot 5^{k+1}}} = 5.$$

Значит, интервал сходимости -5 < x - 3 < 5 или -2 < x < 8. В точке x = -2 получаем условно сходящийся ряд $\sum_{k=1}^{\infty} \frac{\left(-1\right)^k}{k}$, а в точке x = 8 — расходящийся гармонический ряд $\sum_{k=1}^{\infty} \frac{1}{k}$. Таким образом, область сходимости ряда есть полуинтервал $\left[-2;8\right)$.

3. Свойства степенных рядов.

Не ограничивая общности будем рассматривать ряд $\sum_{k=0}^\infty a_k x^k$.

Теорема 3. Если радиус сходимости степенного ряда $\sum_{k=0}^{\infty} a_k x^k$ отличен от нуля, то его сумма S(x) непрерывна на интервале сходимости (-R;R).

▶ Пусть x — произвольная точка интервала сходимости. Всегда существует такое число q>0, что |x|< q< R. По теореме 1 степенной ряд сходится равномерно на отрезке $[-q;q]\subset (-R;R)$. Тогда, согласно теореме о непрерывности суммы равномерно сходящегося функционального ряда, S(x) непрерывна на отрезке [-q;q]. Следовательно, и в точке x. В силу произвольности выбора точки $x\in (-R;R)$ получаем непрерывность функции S(x) на (-R;R). \blacktriangleleft

Теорема 4. Операции почленного дифференцирования и интегрирования на любом промежутке $[x_0;x] \subset (-R;R)$ степенно-

го ряда $\sum_{k=0}^{\infty} a_k x^k$ не изменяют его радиуса сходимости.

▶ Ограничимся рассмотрением случая, когда существует $\lim_{k\to\infty} \left| \frac{a_k}{a_{k+1}} \right|$. Обозначим через R_1 радиус сходимости почленно продифференцированного ряда

$$\sum_{k=0}^{\infty} \left(a_k x^k \right)' = \sum_{k=0}^{\infty} k a_k x^{k-1} .$$

Тогда

$$R_1 = \lim_{k \to \infty} \left| \frac{ka_k}{(k+1)a_{k+1}} \right| = \lim_{k \to \infty} \left| \frac{a_k}{a_{k+1}} \right| = R.$$

Аналогично пусть R_2 — радиус сходимости ряда, полученного почленным интегрированием ряда

$$\sum_{k=0}^{\infty} \left(\int_{x_0}^{x} a_k t^k dt \right) = \sum_{k=0}^{\infty} \left(\frac{a_k}{k+1} x^{k+1} - \frac{a_k}{k+1} x_0^{k+1} \right) =$$

$$= \sum_{k=0}^{\infty} \frac{a_k}{k+1} x^{k+1} - \sum_{k=0}^{\infty} \frac{a_k}{k+1} x_0^{k+1} .$$

Числовой ряд $\sum_{k=0}^{\infty} \frac{a_k}{k+1} x_0^{k+1}$ сходится абсолютно по признаку сравнения в силу неравенства $\left| \frac{a_k}{k+1} x_0^{k+1} \right| \leq \left| a_k x_0^{k+1} \right|, \ k=0,1,\ldots,$ и сходимости ряда $\left| x_0 \right| \sum_{k=0}^{\infty} \left| a_k x_0^k \right|$, так как $x_0 \in (-R;R)$.

Значит,

$$R_2 = \lim_{k \to \infty} \left| \frac{a_k (k+2)}{(k+1)a_{k+1}} \right| = \lim_{k \to \infty} \left| \frac{a_k}{a_{k+1}} \right| = R . \blacktriangleleft$$

Теорема 5. Если радиус сходимости степенного ряда $\sum_{k=0}^{\infty} a_k x^k$ отличен от нуля, то степенной ряд можно почленно дифферен-

цировать на интервале сходимости и для его суммы S(x) справедливо равенство

$$S'(x) = \sum_{k=0}^{\infty} ka_k x^{k-1}.$$

▶ Пусть x — произвольная точка интервала сходимости (-R;R), т.е. ряд $\sum_{k=0}^{\infty} a_k x^k$ сходится. Выберем такое число q, что |x| < q < R. На отрезке $[-q;q] \subset (-R;R)$ ряд $\sum_{k=0}^{\infty} k a_k x^{k-1}$, согласно теореме 4, сходится равномерно. Следовательно, на указанном отрезке, а значит, и в точке x ряд $\sum_{k=0}^{\infty} a_k x^k$ можно почленно

$$S'(x) = \sum_{k=0}^{\infty} k a_k x^{k-1} . \blacktriangleleft$$

дифференцировать, и справедливо равенство

Следствие. Степенной ряд на интервале сходимости (-R;R), $R \neq 0$, можно почленно дифференцировать любое число раз.

► Действительно, так как результатом почленного дифференцирования степенного ряда является степенной ряд с тем же радиусом сходимости, то к нему применима теорема 5 и т.д. ◀

Теорема 6. Степенной ряд $\sum_{k=0}^{\infty} a_k x^k$ можно почленно интегрировать на любом отрезке $[x_0;x]$, принадлежащем интервалу сходимости.

▶ Доказательство теоремы следует из равномерной сходимости степенного ряда $\sum_{k=0}^{\infty} a_k x^k$ на отрезке $[x_0;x] \subset (-R;R)$ и теоремы о почленном интегрировании функционального ряда. ◀

Следствие. Степенной ряд $\sum_{k=0}^{\infty} a_k x^k$ можно почленно интегрировать любое число раз на отрезке $[x_0;x] \subset (-R;R)$.

Пример. Найти сумму ряда $\sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{2k+1}$.

Решение. Рассмотрим ряд

$$\sum_{k=0}^{\infty} (-1)^k x^{2k} = 1 - x^2 + x^4 - \dots + (-1)^k x^{2k} + \dots,$$

полученный почленным дифференцированием исходного ряда. Так как члены этого ряда образуют геометрическую прогрессию со знаменателем $\left(-x^2\right)$, то его сумма $S(x) = \frac{1}{1+x^2}$, если |x| < 1.

Интегрируя ряд $\sum_{k=0}^{\infty} (-1)^k x^{2k}$ почленно на отрезке $[0;x] \subset (-1;1)$, получаем

$$\operatorname{arctg} x = \int_{0}^{x} \frac{dt}{1+t^{2}} = \int_{0}^{x} \sum_{k=0}^{\infty} (-1)^{k} t^{2k} dt = \sum_{k=0}^{\infty} (-1)^{k} \int_{0}^{x} t^{2k} dt = \sum_{k=0}^{\infty} (-1)^{k} \frac{x^{2k+1}}{2k+1}.$$

Следовательно

$$\sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{2k+1} = \operatorname{arctg} x , |x| < 1.$$

Таким образом, функция $y = \arctan x$ является суммой исходного ряда.

Вопросы для самоконтроля

- 1. Какой ряд называется степенным?
- 2. Сформулируйте и докажите теорему Абеля.
- 3. Что называется радиусом сходимости и интервалом сходимости степенного ряда?
 - 4. Перечислите свойства степенных рядов.