Лабораторная работа № 4

Спектр оператора. Компактные операторы

4.1. Найти спектр данного оператора $A: \mathbb{R}^3 \to \mathbb{R}^3$ (таблица 4.2.1).

Таблица 4.2.1

Вариант	A
1	$Ax = (x_1 + x_3, 2x_2, 0)$
2	$Ax = (2x_1, x_2, 0)$
3	$Ax = (x_1, 0, x_2)$
4	$Ax = (x_2 + x_3, x_2 + x_3, x_1)$
5	$Ax = (x_2 + x_3, x_2 + x_3, 0)$
6	$Ax = (0, 3x_2, 3x_3)$
7	$Ax = (x_1 - x_2, x_3, 0)$
8	$Ax = (2x_3, -x_2, 0)$
9	$Ax = (x_1 + x_3, x_2 - x_3, x_3)$
10	$Ax = (x_1 - x_3, x_2 + x_3, 0)$

4.2. Найти собственные значения, точки непрерывного и точки остаточного спектров оператора A в пространстве C[0;1], если $(Ax)(t) = a(t) \cdot x(t)$ (таблица 4.2.3).

Таблица 4.2.3

Вариант	a(t)	Вариант	a(t)
1	$2\left t-\frac{1}{2}\right -2\left t-\frac{1}{3}\right $	6	2t-1 - 2-2t
2	$4\left t-\frac{1}{4}\right -4\left t-\frac{2}{3}\right $	7	$\left 2t-1\right -\left \frac{1}{3}-2t\right $
3	$\left 3t-1\right -\left 3t-\frac{1}{2}\right $	8	$\left 2t-1\right -\left 2t-\frac{1}{2}\right $

4	$5 2t-1 - 10t-\frac{1}{3} $	9	2 t-1 - 2-2t
5	12t-1 - 2-12t	10	$\left 6t-\frac{1}{2}\right -6\left t-\frac{1}{4}\right $

4.3. Выяснить, может ли множество $M \subset \mathbb{C}$ быть спектром некоторого линейного ограниченного оператора. В случае положительного ответа привести пример такого оператора (таблица 4.2.5).

Таблица 4.2.5

Вариант	M	Вариант	M
1	$\left\{0;1;\frac{1}{2};\frac{1}{3};\frac{1}{4};\right\}$	6	$\left\{1; \frac{1}{2}; \frac{1}{3}; \frac{1}{4}; \dots \right\}$
2	$\lambda \in \mathbb{C} \mid -1 \le \lambda \le 1$	7	6. 1; <i>i</i>
3	$\lambda \in \mathbb{C} \mid \lambda = it, 0 \le t \le 1$	8	$\lambda \in \mathbb{C} \mid \left \operatorname{Im} \lambda \right \le 1$
4	0; 21; 20	9	$\lambda \in \mathbb{C} \mid \lambda \le 4$
5	$\left\{\frac{1}{2}; \frac{1}{4}; \frac{1}{8};\right\}$	10	$\lambda \in \mathbb{C} \mid \lambda = 2it^2, 0 \le t \le 1$

4.4. Выяснить, является ли данный оператор компактным в пространстве C[0;1] (таблица 4.3.1).

Таблица 4.3.1

Вариант	A	Вариант	A
1	$(Ax)(t) = t^2 \cdot x(t)$	6	$(Ax)(t) = x(\sqrt[3]{t})$
2	$(Ax)(t) = (t^3 + 5)x(t)$	7	$(Ax)(t) = e^t \cdot x(\sqrt{t})$
3	$(Ax)(t) = x(t^2)$	8	(Ax)(t) = (t+1)x(t)
4	$(Ax)(t) = \sin t \cdot x(\sqrt{t})$	9	$(Ax)(t) = e^{2t} \cdot x(t)$
5	$(Ax)(t) = (t^2 + 3)x(t)$	10	$(Ax)(t) = 2x(\sqrt{t})$

4.5. Определить, является ли данный оператор компактным в пространстве C[0;1] (таблица 4.3.2).

Таблица 4.3.2

Вариант	A
1	$(Ax)(t) = x(t) - \int_0^1 t^2 sx(s) ds$
2	$(Ax)(t) = t^2 \cdot x(0)$
3	$(Ax)(t) = t^2 \cdot x(0) + t \cdot x(1)$
4	$(Ax)(t) = x(0) - t \cdot x(1)$
5	$(Ax)(t) = x \frac{1}{3} + x \frac{1}{5} \cos t - x \frac{1}{7} t$
6	$(Ax)(t) = x \ 0.5 + t^3 \cdot x(1)$
7	(Ax)(t) = x(0) + 3tx(1)
8	$(Ax)(t) = x \frac{1}{4} - x \frac{1}{5} \cos t + x \frac{1}{8} t$
9	$(Ax)(t) = 3x(t) + \int_{0}^{1} s^{2}tx(s)ds$
10	(Ax)(t) = 2tx(0) - x(1)