Элементы дифференциального исчисления в банаховых пространствах

А. Основные понятия и теоремы

Пусть X и Y- банаховы пространства, F- отображение, определенное в окрестности U точки x из X, со значениями в Y.

Определение 1. Отображение $F: X \to$ называется **сильно** дифференцируемым (или дифференцируемым в смысле Фреше) в точке x, если существует такой линейный ограниченный оператор $A_x: X \to$, что при всех $h \in$, удовлетворяющих условию $x + i \in$, выполняется равенство

$$F(x + \iota) - 7(x) = 4 h + \iota c, h,$$

где $\|\alpha (h)\| = \nu(\|h\|)$ (т.е. $\|\alpha(x,h)\|/\|h\| \rightarrow \|h\| \rightarrow \|h\|$).

При этом оператор A_x называется **производной** (или **сильной производной**, **производной Фреше**) отображения F в точке x и обозначается F'(x).

Значение F'(x)h оператора F'(x) на векторе h называется дифференциалом (или сильным дифференциалом, дифференциалом Фреше) отображения F в точке x при приращении h и обозначается dF(x,h).

Укажем некоторые свойства производной.

- 1. Если F(x) = const, то F'(x) = 0.
- 2. Если B линейный оператор из X в Y, то B'(x) = B при любом x.
- 3. Если F,G два отображения из X в Y, дифференцируемые в точке x, то для любых чисел s,t отображение sF+tG тоже дифференцируемо в точке x и (sF+tG)'(x)=sF'(x)+tG'(x).
- 4. (Производная композиции). Пусть отображение F, действующее из X в Y, дифференцируемо в точке x_0 , а отображение G, действующее из Y в Z, дифференцируемо в точке $y_0 = F(x_0)$. Тогда отображение H(x) = G(F(x)) дифференцируемо в точке x_0 и

$$H'(x_0) = G'(y_0)F'(x_0)$$

(в правой части стоит произведение линейных операторов).

5. Пусть $X = \mathbf{R}^m$, $Y = \mathbf{R}^n$. Тогда любое отображение y = F(x) можно записать в виде

$$y_1 = F_1(x_1, \dots, x_m)$$

$$y_n = F_n(x_1, \dots, x_m),$$

и линейный оператор F'(x), действующий из \mathbf{R}^m в \mathbf{R}^n , задается соответствующей

матрицей Якоби, т.е.
$$F'(x) = \left(\frac{\partial F_i(x)}{\partial x_j}\right)_{i=j=1}^n$$
.

Замечание. В случае $X = Y = \mathbf{R}^1$ определение 1, формально говоря, отличается от обычного определения производной функции действительного переменного. Например, для функции $F(x) = x^2$ под производной в точке x в смысле определения 1 нужно понимать линейную функцию $h \mapsto 2xh$.

Определение 2. Дифференциалом Гато отображения $F: X \to \mathbb{R}$ в точке X при приращении h (а также слабым дифференциалом, первой вариацией) называют предел

$$\delta F(x,h) = \lim_{s \to \infty} \frac{F(x+sh) - F(x)}{s} = \frac{d}{ds} \left[F(x+sh) \right]_{s=1},$$

если он существует при всех h из X.

В общем случае отображение $h \mapsto \delta^{-7}(x,h)$ не является линейным.

Определение 3. Если $\delta^{-7}(x,h) = 4_x h$, где A_x - ограниченный линейный оператор, то A_x называют **производной Гато** (а также **слабой производной**) отображения F в точке x и обозначают F_c (x).

Из существования F_c ' (x_0) , вообще говоря, не следует сильная дифференцируемость F в точке x_0 , но , если F_c '(x) существует для x из некоторой окрестности точки x_0 , и отображение $x \mapsto F_c$ '(x) непрерывно в самой этой точке, то F сильно дифференцируемо в точке x_0 . Если же отображение F имеет сильную производную, то оно имеет и слабую, причем эти производные совпадают.

ТЕОРЕМА (об обратной функции). Пусть $F: D \to \infty$ отображение окрестности D точки x_0 банахова пространства X в нормированное пространство Y. Если

- 1) F дифференцируемо в D,
- 2) отображение $x \mapsto F'(x)$ непрерывно в точке x_0 ,
- 3) оператор $F'(x_0)$ обратим,

то найдутся окрестность U точки x_0 в X и окрестность V точки $y_0 = F(x_0)$ в Y, такие, что отображение $F: U \to$ биективно, а обратное κ непрерывно в V и дифференцируемо в y_0 , причем

$$G'(y_0) = F'(x_0)^{-}$$
.

Б. Задачи к лабораторной работе

Необходимые понятия и теоремы см. выше. *Литература*: [6], т.2, стр. 69-86, [9] глава X, [14] стр. 371-380.

1. Вычислите сильную производную отображения $F: \mathbf{R}^m \to \mathbf{R}^n$ в точке x_0 и соответствующий сильный дифференциал при приращении h.

	m	n	F(x)	x_0	h
1.1	3	1	$(x_1 + x_2^2 + x_3^2)$	(1,1,1)	(1,2,3)
1.2	1	3	$(\cos \pi \sin \pi x)$	3	1

1.3	2	3	$(x_1^3, e^{2x_2}, x_1x_3)$	(0,1,1)	(1,3,2)
1.4	3	3	$(x_1 \sin x_2, x_2 \sin x_1, \ln x_3)$	(0,2,1)	(3,2,1)
1.5	3	2	$(\sqrt{4} - \frac{1}{x_1^2} - \frac{1}{x_2^2} - \frac{1}{x_3^2}, x_1 x_2 x_3)$	(1,1,1)	(2,1,0)
1.6	2	2	$(e^{x_1+x_2}, x_1^2+x_2^2)$	(2,2)	(1,2)
1.7	3	3	$(x_1 + z_2 + z_3, e^{2x_1}, \sin x_3)$	$(0,1,\pi)$	(-3,2,1)
1.8	2	3	$(x_1x_2, 1/(x_1^2+x_2^2), cosx_2)$	$(0,1,\pi 2)$	(-1,2,2)
1.9	3	2	$(arctgx_1x_2,x_1x_2x_3)$	(1,1)	(-1,-1)
1.10	2	2	$(\sqrt{x_1^2} + \frac{1}{x_2^2}, x_1 / x_2)$	(-1,10	(3,-2)
1.11	3	3	$(x_1 + x_2, ln(x_2 + x_3), sin(2x_1x_3))$	(-1,2,1)	(-1,1,0)
1.12	2	3	$(x_1 - x_2, \sin(x_1 + x_2), \ln x_2)$	(1,2)	(-1,-2)
1.13	3	2	$(x_1 - x_2 + x_3, \cos(3x_1x_3))$	(1,2,-1)	(-1,2,1)

2. Вычислите производную Фреше нелинейного функционала $f: H \to \mathbf{R}$ в точке

 x_0 , если H - вещественное гильбертово пространство.

wo, certain between the bed in the contract of							
	2.1	2.2	2.3	2.4	2.5	2.6	2.7
H	l_2	$L_2[0,1]$	l_2	$L_2[0,2]$	$L_2[-1,1]$	l_2	$L_2(\mathbf{R}_+)$
f(x)	$sin x ^2$	$e^{ x ^2}$	$ x ^4$	$ x ^2 +$	$ x ^3$	$\cos x ^4$	$ x ^{1/2}$
				$ x ^4$			
x_0	(1,0,0,)	t	(0,1,0,)	sint	t^2	(0,0,)	e^{-t}
	2.8	2.9	2.10	2.11	2.12	2.13	2.14
Н	l_2	$L_2[-1,1]$	l_2	$L_2(\mathbf{R}_+)$	l_2	$L_2[1,2]$	$L_2(\mathbf{R})$
f(x)	$ x ^{1/3}$	sin2 x	$ x ^{3/2}$	ch x	ln x	$sh x ^2$	x
x_0	(0,1,0,)	1	(-1,0,0,)	t	(2,-2,0,)	t^2	$e^{- t }$

3. Найдите производную Фреше отображения $F: C[0,1] \to [0,1]$ в точке x_0 .

3.1	$\int_{0}^{1} tx^{2}(s)ds$	t^2
3.2	tsinx(t)	tcost
3.3	tcosx(t)	sint
3.4	$t^{2}x(t) + shx(t)$ $x(t) - e^{tx(t)}$	ln2
3.5	$x(t) - e^{tx(t)}$	1
3.6	$t^3x(t) + \int\limits_0^1 x^2(s)\sin t ds$	-t
3.7	$t^3 \int_0^1 x^3(s) ds$	t^2

3.8	$2x(t) + ch^2x(t)$	e^t
3.9	$t\int_{0}^{1}x(s)ds+x^{2}(t)$	-1
3.10	$tx(0) - x^3(t)$	t
3.11	$x(t)sint + x^4(t)$	cost
3.12	$t\int_{0}^{1}e^{x(s)}ds$	-t ²
3.13	$x(t) - \int_0^1 x^2(s) ds$	1
3.14	$t^2e^{x(t)}$	t

4. Вычислите сильный дифференциал отображения $F: X \to X$

4. Вычислите сильный дифференциал отооражения $F: X \rightarrow$					
	X	Y	F(x)		
4.1	l_1	R	x_1^3		
4.2	l_2	R	x_1^3 x_2^3		
4.3	l_2	R	$x_1^2 + 2x$		
4.4	l_2	R	$\sum_{n=1}^{\infty} x_n + \sum_{n=1}^{\infty} x_n^2$		
4.5	l_2	R	$x_{2}^{2} + \sum_{n=1}^{\infty} x_{n} / n$ $x_{1}^{2} - x_{2}^{2}$ $(x_{1}^{2}, x_{2}^{2},)$ $(x_{1}^{3}, x_{2}, x_{3},)$ $(x_{1}, x_{2}^{4}, x_{3},)$		
4.6	l_2	R	$x_1^2 - x_2^2$		
4.7	С	С	$(x_1^2, x_2^2,)$		
4.8	С	С	$(x_1^3, x_2, x_3,)$		
4.9	С	С	$(x_1, x_2^4, x_3,)$		
4.10	С	С	$(x_1, x_1x_2, 0,)$		
4.11	С	С	$(x_2^2/2, x_3^2/3,)$		
4.12	С	С	$(x_1, x_1x_2, 0,)$ $(x_2^2/2, x_3^2/3,)$ $(0, x_1^3, x_2^3,)$		
4.13	l_2	l_2	$(x_1x_3, x_2, x_3,)$		
4.14	l_2	l_2	$(x_1^3 + x_1, x_2^3 + x_2, \dots)$		

5. Будет ли функционал f в пространстве X дифференцируем по Фреше в точке 0?

	5.1	5.2	5.3	5.4	5.5	5.6	5.7
X	С	l_1	c_0	C[0,1]	$L_{1}[0,1]$	C[0,1]	$C^{(1)}[0,1]$
f(x)	$ x_1 $	x	$ x_I ^3$	x(0)	x	x + 1	x
	5.8	5.9	5.10	5.11	5.12	5.13	5.14
X	C[-1,1]	С	l_1	C[-1,1]	$C^{(1)}[0,1]$	C[0,1]	$L_2[0,1]$
f(x)	$\int_{-1}^{1} x(s) ds$	x	x	x(1)	x'(0)	$ \int_0^t x(s)ds $	x

6. Доказать, что для заданного в пространстве C[0,1] нелинейного отображения F

существует такая окрестность V точки $y_0 = 7(x_0)$, что для любого $y \in$ уравнение y=F(x) имеет единственное решение .

	x_{0}	F
6.1	$x_0(t) = \frac{2}{3}$	$F(x)(t) = c(t) + \int_{0}^{1} t^{2} x^{3}(s) ds$
6.2	$x_0(t) = \frac{3}{3}$	$F(x)(t) = 2x(t) + \int_{0}^{1} tsx^{2}(s)ds$
6.3	$x_0(t) = 1 +$	$F(x)(t) = x(t) + \int_{0}^{1} t^{3}x^{2}(s)ds$
6.4	$x_0(t)=t^2$	$F(x)(t) = x(t) + \int_{0}^{1} t^{2} sx^{3}(s) ds$
6.5	$x_0(t)=t-1$	$F(x)(t) = x(t) + \int_{0}^{1} e^{t} x^{3}(s) ds$
6.6	$x_0(t)=1-t^2$	$F(x)(t) = x(s) - 3\int_{0}^{1} t^{2}x^{2}(s)ds$
6.7	$x_0(t)=t$	$F(x)(t) = c(t) + \int_0^1 \sin \pi x^2(s) ds$
6.8	$x_0(t)=1$	$F(x)(t) = 2x(t) - \int_{0}^{1} t^{2} s^{3} x^{2}(s) ds$

- 7. Пусть функции f(t,u) и f_u '(t,u) непрерывны на множестве $[a,b] \times \mathbf{R}$. Вычислите дифференциал Фреше отображения F(x)(t) = f(t,x(t)), действующего в пространстве C[a,b]
- 8. Пусть функции f(t,s,u) и f_u (t,s,u) непрерывны на множестве $[a,b] \times [a,b] \times \mathbf{R}$. Найдите производную Фреше отображения

$$F(x)(t) = x(t) - \int_{a}^{b} f(t, s, x(s)) ds,$$

действующего в пространстве C[a,b].

9. Найдите производную Фреше функционала

$$f(x) = \int_{a}^{b} \Phi(t, x(t)x'(t))dt,$$

определенного в пространстве $C_0^{(l)}[a,b]$ непрерывно дифференцируемых функций на отрезке [a,b], равных нулю на концах отрезка, если $\Phi^{(2)}(\mathbf{R}^3)$.

10. Пусть отображение $F: X \to \mathbb{R}$ непрерывно дифференцируемо по Фреше на отрезке $[x_1, x_2] \subset \mathbb{R}$. Докажите формулу конечных приращений

$$F(x_2) - F(x_1) = \int_0^1 F'(x_1 + 1)(x_2 - x_1)(x_2 - x_1) d\theta.$$

11. Докажите, что если отображение $F: X \to \mathbb{R}$ непрерывно дифференцируемо по Фреше на отрезке $[x_1, x_2] \subset \mathbb{R}$, то оно удовлетворяет условию Липшица:

$$||F(x_2) - F(x_1)|| \le L||x_2 - x_1||,$$

где $L = \sup\{||F'(x)|| \mid x \in [x_1, x_2]\}$

- 12. Докажите, что если отображение $F: X \to \mathbb{R}$ непрерывно дифференцируемо на выпуклом множестве $D \subset \mathbb{C}$ и F'(x) = 0 при всех x из D, то F постоянна на D.
 - 13. Рассмотрим оператор $F: C^{(2)}[0,1] \to C[0,1]$,

$$F(x)(t) = x''(t) + \sin x(t).$$

Вычислите $dF(x_0,h)$ и $d^2F(x_0,h)$, где $x_0(t)=t$.

ЛИТЕРАТУРА

1. Антоневич А.Б, Радыно Я.В. – Функциональный анализ и интегральные уравнения. -

Минск, 1984.

- 2.Антоневич А.Б., Князев П.Н., Радыно Я.В. Задачи и упражнения по функциональ ному анализу. Минск, 1978.
- 3. Бейтмен Г., Эрдейи А. Таблицы интегральных преобразований в двух томах. Т. 1.

Москва, 1969.

- 4. Бронштейн И.Н., Семендяев К.А. Справочник по математике для инженеров и учащихся вузов. Москва, 1986.
- 5. Диткин В.А., Прудников А.П. Интегральные преобразования и операционное ис -

числение. – Москва, 1974.

- 6. Зорич В.А. Математический анализ. Т. 1-2. Москва, 1981.
- 7. Кириллов А.А., Гвишиани А.Д. Теоремы и задачи функционального анализа. Москва, 1979.
- 8. Князев П.Н. Функциональный анализ. Минск, 1985.
- 9. Колмогоров А.Н., Фомин С.В. Элементы теории функций и функционального ана -

лиза. – Москва, 1981.

- 10. Корн Г., Корн Т. Справочник по математике. Москва, 1974.
- 11. Люстерник Л.А., Соболев В.И. Краткий курс функционального анализа. Моск ва, 1982.
 - 12. Натансон И.П. Теория функций вещественной переменной. Москва, 1974.
 - 13. Очан Ю.С. Сборник задач по математическому анализу. Москва, 1981.
 - 14. Треногин В.А. Функциональный анализ. Москва, 1980.
- 15. Треногин В.А., Писаревский Б.М., Соболева Т.С. Задачи и упражнения по функциональному анализу. Москва, 1984.
 - 16. Шилов Г.Е. Математический анализ. Второй специальный курс. Москва, 1984.